OBJECTIVE: Implementation of fractional knapsack problem.
THEORY: The Fractional Knapsack Problem usually sounds like this:
Thief has just broken into the Fort Knox! He sees himself in a room with n piles of gold dust. Because the each pile has a different purity, each pile also has a different value (v[i]) and a different weight (c[i]). Ted has a knapsack that can only hold W kilograms.
PROGRAM:
#include <stdio.h>
#include<conio.h>
int n = 5;
int c[10] = {12, 1, 2, 1, 4};
int v[10] = {4, 2, 2, 1, 10};
int W = 15;
void simple_fill() {
int cur_w;
float tot_v;
int i, maxi;
int used[10];
for (i = 0; i < n; ++i)
used[i] = 0;
cur_w = W;
while (cur_w > 0) {
maxi = -1;
for (i = 0; i < n; ++i)
if ((used[i] == 0) &&
((maxi == -1) || ((float)v[i]/c[i] > (float)v[maxi]/c[maxi])))
maxi = i;
used[maxi] = 1;
cur_w -= c[maxi];
tot_v += v[maxi];
if (cur_w >= 0)
printf("Added object %d (%d$, %dKg) completly in the bag. Space left: %d.\n", maxi + 1, v[maxi], c[maxi], cur_w);
else {
printf("Added %d%% (%d$, %dKg) of object %d in the bag.\n", (int)((1 + (float)cur_w/c[maxi]) * 100), v[maxi], c[maxi], maxi + 1);
tot_v -= v[maxi];
tot_v += (1 + (float)cur_w/c[maxi]) * v[maxi];
}
}
printf("Filled the bag with objects worth %.2f$.\n", tot_v);
}
int main(int argc, char *argv[]) {
simple_fill();
return 0;
}
OUTPUT:
Added object 5 (10$, 4Kg) completly in the bag. Space left: 11.
Added object 2 (2$, 1Kg) completly in the bag. Space left: 10.
Added object 3 (2$, 2Kg) completly in the bag. Space left: 8.
Added object 4 (1$, 1Kg) completly in the bag. Space left: 7.
Added 58% (4$, 12Kg) of object 1 in the bag.
Filled the bag with objects worth 17.33$.
No comments:
Post a Comment